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FOREWORD 

Tivis report was prepared by the Composites and Fibrous Materials 

Branch, Normetallic Materials Division, Air Force Materials Laboratory. 

The werk was conducted under Project No. 7340, "Nonmetallic and Composite 

Materials," Task No. 734004, "Structural Plastics and Composite Materials," 

with Mr. R. J. Dauksys serving as Project Engineer. 

The author wishes to gratefully acknowledge R. Kuhbande.- for his 

contribution in the fabrication and testing of the potting compounds 

described in this report. 

This report covers work from February 1972 to February 1973. 

This technical report has been reviawed and is approved. 

T. J. Reinhart, Jr., Acting Chief 
Composite and Fibrous Materials Branch 
Nonmetallic Materials Division 
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:·r·r•! l:,r:LM'Y' i; i,··:n,•linn and data an~ prr~sented which 5ho·w hov1 the 

'!:• 1' 1
''': 1, '1 C:l i r' i r:;; i , ·did tr:r~chuni Cill propcrt·! I?S Of epoxy pot: i n~1 COirrpO!HHh 

· .•. ' •:u:r':,,l]c,I i;; thr· .1ddition of di:.:.cor1tinuous fibrous r(!infor;:;(~lnent~ 

,: :,i~ii: r::r)·i::!rr•; ''' ::)~~il.e and/or boron nitride (f3N). The addition of 16 

'"': i: :.11'i' fr!;.;,ir,:·~! (;lf;h) of nominal 3 mil long graphite fibers of 83 x 106 

:,·. •'::i ·; , 1,:ctc<···r•:i U1•.> l·inear thermal coeffici(~nt of expansion h) of 

, n:-•,' .· /1 •Jr·rw; !Jil.3 1: '10-C in/in/°C to 12.3 X 10-6 in/in;0C). 

• u: 11 ;•.· l:i1 ,,r.:rlul11s qraphi te fiber· fiber modification compared to 

. ,_:n 1 iii •.'d ~·po;.:y putti n9 compound, modu1 us \~as increased by a factor o i 

0:' 1 'ru::in!;d.L:y ?.r; (C.{lC x 106 psi to 1.2B x 106 psi) while strength v1as 

'':;.;; ;:1iH'~Jiilal 1 y il•cTL'a':r~d (15.7 x 103 ps·i to 16.3 x 103 psi). 13N fil.Jrr 

c,dJ;;:·ions, up to H pph, had liLt1e effect on modulus or strength; how-

' . , , fen· t!11' 1·1 ppli <Hiuition a was reduced by appr'oximately 40'Y,. 

di'.' t·,~dtH. t:ic>n nf '(of an epoxy potting compound utilizirlCJ graphit~· 

" ·~lor !)ti fHH:ts is ':i:O\'Itl to be a function of modulus of fibers and 

:·,c:::,Livc• :xu! fiher·s along their lenyth, as ivell tiS quantity of fiber~ 

file, ,,.d,:ition ur i4 pph boron nitride fibers only marginally reduced 

,.,, .. l~t:'ivity, i.e., to 6.9 x 1013 . Combinations of graphite and BN fiber·; 

:J -,.i i ,J.>l e;:oxy potting compounds with properties intermediate compared to 

'i'';:'/ poi~tiillj compoLmds \vith additions of graprite or BN fibers as sole 

Density for the hiqhest loaded epoxy (16 pph) containing the densest 

fihe·( modifier (sr<lphite) ~tJith P=2.0 glee) was only increased by approx

i,nately 5,5;; over the unfilled epoxy potting compound. All potting 

··or:::uL;tions ·,·;ere of pournble consistency indicating gCJod filling 

ch:.1rac tel"::; tics. 
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SECTION 1 

INTRODUCTION 

The materials development program described herein was initiated as a 

result of a request from the Space and Missiles Systems Organization 

(SAMSO) to act as consultant on a problem involving premature failure of 

epoxy potted sensors during fabrication of a classified reentry vehicne. 

In essence, approximate calculations indicated that during a bonding 

operation at elevated temperatures, the already epoxy potted sensors were 

exposed to thermally induced compressive forces far in excess of their 

rated capability. Possible solutions to the problem were; 

a. Utilization of o  less pressure sensitive sensor; 

b. Utilization of a low temperature curing adhesive; 

c. Redesign öf the reentry vehicle; 

d. Utilization of a lower-modulus/thermal-coefficient-ef- 
expansi^.i (E a ) potting compound with similar handling 
characteristics as the one initially selected; 

e. Combinations of the above. 

Item d is the subject of this report. 

Epoxy potting compounds are widely used for a multitude of commercial, 

as well as aerospace applications. This report addresses potential prob- 

lems associated with potting of delicate electrical, optical, and/or 

mechanical sensors. Through experiment, it is shown how an epoxy polymer 

may be modified with discontinue us high performance graphite and/or boron 

nitride fibers to achieve heretofore unrealized potting compound properties. 

Although the material developments discussed are oriented toward epoxy 

potting compounds, other classes of polymers may be modified in like 

manner to achieve similar improvements in mechanical properties or 

alteration in physical characteristics. 

mmm w 
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SECTION II 

MATERIALS 

1 Epoxy Potting Resin 

A control  cpoxy potting compound was used throughout this program 

to study the effect of various fillers of different amounts on mechanical, 

physical,  thermal, and electrical  properties.    The resin system (Reference 1 

was designated Epon 815*, a bisphenol-A epoxy which was modified with a 

mono-epoxy diluent to reduce viscosity.    The curing agent was diethylene- 

triamine (DTA) added at 11  pph (Parts per hundred by weight).    Properties 

of the cured,  unmodified resin are shown in Table  I. 

2. Graphite  Fibers 

Discontinuous graphite fibers for modification c.f the epoxy potting 

compound were obtained from the Thornel** Series of continuous yarns. 

Properties are shown in Table I. A carbon yarn designated VYB 105-1/5 

of lower modulus than the Thornel yarns was also used. The Thornel 75 

yarn had a measured average modulus of 83 x 10 psi and 330 x 10 psi 

tensile strength. Of note is the reported increase in negative a up to 

the 50 x 10 psi modulus fiber, and then the decrease in negative a wi':h 

75 x 10 psi filament (Reference 2). The slight difference in a    between 

Thornel 50 and Thornel 75 fibers is also shown to carry over to potting 

compounds of the same quantity fibers as described in subsequent sections 

of this report. 

3. Boron Nitride (BN) Fibers 

The BN fibers, supplied in mat form, were of an experimental lot 

obtained from Carborundum Corporation. Figure 1 S'-JWS the bulk mat in the 

"as-received" condition and Figure 2 shows fibers from the mat at highe^ 

magnification. Unlike the carbon base fibers, the BN has dielectric 

*Shell 

**Union Carbide 
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, 1 nc~cc,,r·'isti,_: \<Jhich impart attribute!i as an insulator rather t.lit~ll ,, 
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'Ll'l'lni•(·d :r·om X-ray ,m;;lysis of single crystals. The actudl val~;e 

:u1 :.ric ii!:P:'~ f,!r L mat fibl~rs is prc:Jahly far· less n('gative thtH: indicated. 
i:c.'~'nt· ::r: f·it::~r· d!~Veloprnent5 indicate that much h·igller strengt:1 :.md 

.,:~1f. 1 t.:·i,.:·~ .J'r''e :)·J~;sib.lr~ tt1an indicated in Table I. At; the modulus ·incr·uuscs 

nci ~he fil.1E:::· a~~sumes a more ordet'ed crystalline :tructure, (~ , in the 
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il:::Jt(1.·:c! [b,, tiF'Ol't~ticdl vulue shown in Table I. 
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SECTION  HI 

MECHANICAL AND PHYSICAL PROPERTY EVALUATIONS 

1.        Flexural   Strength and Modulus 

Flexural   strength and ntodulus were obtained from the same specimens 

that were used for thermal  expansion measurements.    The tests were con- 

ducted using procedures of Federal  Test Specification i       406b as a guide. 

The  3-point loading method was employed with a  spc.n- to-depth ratio of 

16 to 1.    Specimens were tested at  a crosshead rate cf 0.05 inches per 

minute. 

2. Density 

Density was determined by water irrenersiori. 

3. Resistivity 

Resistivity measurements were made utilizing a üeckman Megohnmeter, 

Model L-8 following the procedures outlined in ASTM D-2b7-66, 

wore 3 inches in diameter and 1/3 inch thick. 

samples 

4.   Viscosity 

Viscosities were obtained using a Brookfield Viscometer, Model 
rn'F, with a Number 6 spindle at ?, 4, 10, and 20 RPM's. ASTM C-1324- 

was used as a gin de. The contain«1" used for the measurements was 

4 inches in depth and 1.125 -inches  inside diameter.    The potting com- 

pound was filled to 0.25 inches from the top and the spindle centered in 

the compound.    Readings were taken at 72 t 2°F.    As per ASTM D-1824-61T, 

comparison may be made to single reported values by using the viscosity 

d3termined at a spindle RPM of 20. 

5.        Fiber Length Determinations 

Fiber lengths were measured from 250X photographs of cured potting 

compounds. The average length of fibers, for all the potting compounds, 

was  approximately 0.003  inch as indicated from the sample determinations 



AFML-TR-73-101 

shown below: 

a.     Fiber Length of 5 PPH Thornel  75 

A 

Fiber Size  (inches) -3.2xl0~3 3.2-6.0xlG~3        >6.0xl0~3 

Average Length of 
Fiber in Categories 
A    R    +f 

.65x10" 4.59x10" 8.?9xl0' 

of Fibers of 
Average Length in 
Categories A, B, +C 

69.5 19.5 1 .0 

Average Fiber Lenath = 2.95x10"    inches 

b.     Fiber Length uf 5  PPH Thornel   50 

Fiber Size  (inches' 3.2x10 -3 
3.2-6.0xl0"3        >6.0X10"3 

Average Length of 
Fibers in Categories 
A,  B, +C 

1.72x10" 4.49x10 9.03x10 

. of Fibers of 
Average Length in 
Categories A, B, +C 

80 10 10 

_3 
Average Fiber Length = 2.72x10      inches 

6.        Coefficient of Linear Thermal  Expansion 

The test method and apparatus for determining the coefficient of 

linear thermal expansion of the materials in this investigation were 

similar to those described in ASTM D-696-70. 

Hi I ■   l    IJ.HI 
- •% m* 



-------~-·--~ ....--------

i
1

!< ;ur·c'rnLIJ u~:c•rl :1•1r., r'cctangular in cross section, having overall 

•
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:Hr:: c: " U>sl:. ,,,.:s cunclucted for Ci.tch Vulue of d. shown in Table III. 
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SECTION IV 

PREPARATION OF CURED POTTING COMPOUNDS 

Several mixing methods were investigated. The results obtained for 

a  were not significantly changed regardless of the methods used. 

Methods were tried using hand mix, blenders, and vacuums, and combinations 

of ->ach. The most satisfactory method was as follows: 

The apparatus used for mixing the reinforcement and resin was a two- 

speed Waring blender with four cutting blades. The amount of resin (less 

curing agent) used must be sufficient to cover the cutting blades which 

in this case was 100 grams. After the resin is poured into the blender, 

the prepared chopped fibers were added. The continuous yarns, as well as 

BN fiber material were manually cut with a scissors to about one-half I^h 

1eng' is and transferred to a container prior to loading the blender with 

esin. Best mixing was obtained by adding the chopped fibers in incre- 

ments of 5 pph of resin. 

The mixing time (10-25 sec) was generally controlled by the sound of 

the blender. Initial mixing caused cavitation and some fiber filler was 

deposited on the iides of the blender above the resin level. Mixing was 

stopped and the fibers were scraped from the sides and deposited in the 

resin. When the fibers are properly blended, the mixture no longer 

cavitates and ehe blender has a smooth mixing sound. Fibers of higher 

modulus appearad to require less mixing time. 

During blending, the mixture increased in temperature due to heat 

transfer from the mixture motor assembly. Before the curing agent was 

addjd, it was important that the mixture be allowed to cool to room 

temperature. While the mixture was cooling, it was placed in a vacuum to 

remove entrapped air. After the mixture was cooled to room temperature 

the curing agent was added. 

All compounds were cured at room temperature for a minimum of 16 hours 

prior to mechanical and physical testing, 

7 
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SECTION V 

CALCULATIONS 

1.       Thermally Induced Compression Stresses (Approximate) 

The stresses within the potting compound and, in turn, on potted 

sensors were calculated for a 2-dimensionally restrained system, i.e., 

one face of potting compound unrestrained, and for a 3-dimensionally 

restrained system, i.e., the potting compound totally enclosed within a 

container.    In both cases the container was assumed to have negligible 

expansion. 

a.    The 2-Dimensionally Restrained Potting Compound 

To approximate the stresses on an element in a potting 

compound the following Hooke's law relationships were used 

ex = K-f S + °z)+aAT (1) 

e
y = I °y * f (ox + ay) + °AT (2) 

e2 = I °z " f (ox + az) + aAT 
(3) 

where ev, eu, e   and   aY, au. a,   represent the principal strains and 

stresses, respectively.    E and v   are the modulus and Poisson's ratio of 

the cured potting compound, respectively;      a   is the coefficient of 

linear thermal expansion;     and   AT   1s the change in temperature. 

Assuming 2-dimensional restraint (Figure 3),   z, being unrestricted, 

we have 

cx - ey - 0 (4) 

ex » \ ox - | (a+ o) + aAT = 0 (5) 

w ■wuuju Mm/mHUGmsm&t&sgm - 
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M 

ey = E °y "f (ox + °z)  + aAT = ° (6) 

(7) 

Solving simultaneously for a 

•)v-( = - ( v+1)  aAT 

(8) 

°y = 
(v+l)aAT 

E  E 

Using the following potting compound (unfilled) property values, we obtain 

E = 0.46 x 106 psi 

v = 0.35 

a = 54.3 x 10"6 in/in/°C 

For a 1°C rise in temperature (AT), the stress for the Z-dimensional1}' 
restrained compound is 38.5 psi  (compression) or a    = a    = 38.5 psi 

x  y 

oz = 0 

b. The 3-Dimensionally Restrained Potting Compound 

If the z-plane restriction is considered, as shown in Figure 4, 

then 

ex = ey = ez = ° (10) 

and Equations 1 - 3 may be consolidated, so that 

£ o - £{2a) + aAT = 0 :n) 

i .*.»"; fiJ'iV'... ■ ■ ■ i ,111;. .,j,.,'f Ma 
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Rearranging, we can write 

OAT 
a "I—?y 

E " E 
(12) 

and by using the properties for the unfilled epoxy potting compound listed 

in Table I above, a 1°C rise in temperature induces a compressive pressure 

of 82.3 psi or 

a=o=o= 82.3 psi 
x  y  z     r 

(NOTE-. No attempt was made to provide a rigorous analytical solution for 

the particular configuration investigated.) The subject potting container 

was of 6-4 titanium alloy (E = 16 x 106 psi, a = 9.5 x 10'6 in/in/°C), and 

it was assumed rigid, thus of no influence on the expansional character- 

istics of the potting compound. In fact, the expansional characteristics 

of the container would have a tendency to reduce compression stresses 

generated within the potting compound. The higher the a of the container, 

the lower the compression stresses. 

2.   Flexural Modulus and Strength 

Potting compound flexural strength was determined from 

3SP 
o = 

where 
2WD' 

o = flexural strength (pounds/inches ) 

S = span (inches) 

P = load (pounds) 

W = width (inches) 

D = depth (inches) 

Modulus was calculated from 
E * 

PS° 

4WD2 

where the symbols are as defined for the preceding flexural strength 

equation. 

10 
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3.       Factor Increase in Weight of Various Powder Fillers Over Weight of 

Thornel 50 Fibers to Obtain a of 13.4X10"6 In/In/°C 

The results shown in Column A of Table IV were obtained by dividing 

the percent total weight of filler (extrapolation cf curves of Figure 6) 

by the total weight percent (11.2%, 14 pph) Thornel  50 to obtain a value 

of 13.4X10"6 in/in/°C. 

4.        Factor Increase in Density of Various Potting Compounds Over Density 

of Thornel 50 Potting Compound to Obtain a of 13.4X10"6 In/In/°C 

The results shown in Column 3 of Table IV were obtained by cal- 

culating the densities of the various modified potting compounds and 

then dividing each calculated density by the measured density of the 

11.2% by weight Thornel  50 fiber   filled potting compound.    The Rule-of- 

Mixtures was used to calculate densities; for example 

where 

V    =^+>W
r 

P   = density of potting compound 
pc 

p-  = density of fiber 

P„  = density of resin r 

Wf  = percent by weight fiber 

W  = percent by weight resin 

(including curing agent) 

11 
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SECTION VI 

^ ■  w* 

DISCUSSION 

Fillers are used extensively to modify epoxies to obtain desired 

end-properties. Modification of potting compounds to reduce a and 

potential thermally induced stresses on delicate embeddec components, 

has been accomplished by compounding the resin system with fillers such 

as aluminum oxide, aluminum powders, mica, talc, silica, lithium 

alumi.ium silicate, calcium carbonate, and others. Figure 5 shows the 

reduction of a versus amount of a particular filler. It is apparent 

that, to obtain significant reductions in a , filler in v-sry large 

quantities is required. Figure 6 consists of another series cf curves 

obtained from a different source (Reference 1) which show that the 

compound must be heavily filled to obtain appreciable decreases \<\ a. 

Because of this fact, the improvement (reduction) in a is countered by 

undesirable changes in properties such as increased viscosity, density, 

and modulus. The latter influences the degree of thermally induced 

stresses. 

The maximum amount of fibers compounded was limited to 16 pph 

(12.6% by weight of total) to maintain a pourable consistency. Table II 

shows viscosities in centipoises for the uncured potting compounds. The 

value at a spindle RPM of 20 is customarily reported. For the potting 

compound application which led to this study, 20,000 centipoises was a 

requirement, although a higher value (other requirements beinq satisfied) 

could be tolerated. 

Figure 7 shows a versus quantity of fibers for the systems invest- 

igated. Increasing amounts (to 14 pph) of negative a BN fibers indicates 

a decreasing a of the potting compound. The same is true for the 

Thornel fiber modifications, where the greater negative a fibers impart 

the lowest a   potting compounds. The a's of the Thornel 50 and Thornel 

75 fibers (Table I) are numerically very close. This similarity is also 

reflected in potting compounds containing the different fibers, but 

comparable weight fractions. Only one series of thermal expansion 

measurements was conducted for the low modulus (6 x 10 psi) carbon 

12 
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fiber modified epoxy potting and is shown in Figure 7 by the solid 

triangle. 

The effect on potting compound o, using combinations of Thornel 75 

fibers and BN fibers, is shown in Figure 8. It appears that a linear 

relationship exists between the limits of Ü and 14 pph fibers and that 

mixtures of these fibe»s within those limits will provide intermediate 

a's. 

Calculations were made (Section V) to approximate the thermally 

induced compression stresses generated on an encapsulated component for 

a 1°C rise in temperature. Results are depicted in Table III for the 

various fiber-modified potting compounds. These same results were used 

to plot the compression stresses versus temperature rise from room 

temperature (22°C) curves (Figures 9-13) for the different systems 

investigated. Both 2- and 3-Dimensionally restrained compounds are 

shown. The figures graphically illustrate the importance of temperature 

control and design of the potting container (restraint effects) to 

maintain stresses at the lowest possible level. 

As indicated by the curves, one approach to reduce stresses would be 

to provide a design that does not warrant intimate contact of the potting 

compound with all sides of the container. As shown in the curves, the 

2-dimensionally restrained compound allows stress relief, whereas the 

3-dimensionally restrained system does not. When permissible, stresses 

may be further reduced by closely matching the a of the potting compound 

to that of the container. 

The magnitude of stresses is not solely attributed to o, but is 

actually the product of modulus and a or Ea. This is clearly indicated 

when we compare (Table III) the stresses per centigrade degree rise 

in temperature for the 5 pph Thornel 75 compound to the 16 pph Thornel 

75 compound. Even though the 16 pph compound is one half the a of the 

5 pph compound, the significantly higher modulus of the 75 pph modifi- 

cation, due to higher value fraction fibers, results in higher stresses. 

13 
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Alternately, The Ea influence on thermally induced stresses are 

shown when we compare potting compounds of equivalent weight fractions 

fiber reinforcement, but different modulus fiber. For instance, 16 pph 

of the lower modulus Thornel 50 results in lower thermal stresses than 

the epoxy formulated with 16 pph of the higher modulus Thornel 75 

(recall that a of the Thornel 50 fiber is approximately the same as a 

of the Thornel 75 fiber). 

It is cautioned, that the calculated compression stresses for both 

a 3-dimensionally restrained (totally enclosed) and 2-dimensionally 

restrained (no restriction on one face) potting compounds are only 

approximate, because we assumed that the container material was completely 

rigid and nonexpanding. Depending on the aE, the geometry, and thick- 

ness of the container material, stresses may be further reduced. However, 

the results on a qualitative basis, are quite informative for rating 

potting compounds and indicating the potential severity of thermally 

induced stresses on sensitive potted elements. 

The slight discrepancies in modulus values at the highest fiber 

loadings (14 and 16 pph) are attributed to 3xperimental error in 

preparing the compounds of slight volume fraction difference. Typically, 

the modulus would be expected to increase for the higher fiber loading. 

Another possible source of error is that ths specimens did not all have 

the same length of cure. This would also affect the modulus of the 

potting compounds. 

Referring to Table III, it is seen that a wide range of ot's are 

possible, and depending on requirements, resistivity may also be con- 

trolled. Because of the dielectric properties, BN fiber potting 

compound modifications offer not only reduction of a and thermal 

compression stresses, but also good dielectric characteristics such as 

indicated by the negligible loss of resistivity for the 14 pph addition. 

Although the hexagonal crystal structure of BN (Reference 3) is a close 

analog of the graphite structure, and many properties are similar 

(theoretical mechanical properties, high temperature resistance, and 

14 
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lubricating qualities), othe.* properties are radically different.    For 

instance, BN is white and has exceptionally good insulating properties 

while graphite is black and behaves as a conductor.   At room temperature 
12 

the specific resistai^e of BN has been reported in excess of 10     ohms. 

Anticipated developments in BN fiber technology will provide fibers with   *^k 

higher strength, modulus, and lower thermal coefficient of expansion 

without affecting its excellent dielectric properties.    Thus, for an 

application requiring high insulating qualities, as might be expected in 

potting unprotected electrical components, a BN fiber formulation may be 

in order. 

As mentioned earlier, another advantage of compounding with these 

discontinuous high performance fibers is that the weight per unit volume 

is changed little over the control unmodified potting compound because 

U) such a small quantity of fibers is necessary to achieve desired 

properties, and (b) the fibers are themselves of low density.    Table IV 

lists typical  fillers which have been used to modify potting compounds 

and notes those that are capable of providing o's as low as that obtained 

(13.4 x 10"6 in/in/°C) for the 11.2% by weight Thornel 50 fiber modifi- 

cation.    The total weight percent modifier indicated to reduce a   was 

determined by extrapolating the curves of Figure 6 to 13.4 x 10"    in/in/°C. 

The differences between the o   and density of the Epon 828 system 

(Figure 6) and the control Epon 815 system used in this study were 

considered neglibible.    It is assumed that the high weight percent 

fillers shown in Figure 6 would be difficult to compound and be of 

extremely high viscosity. 

The A* column of Table IV indicates, for the fillers listed, that to 

achieve an o   of 13.4 x 10     in/iri/0C, at least seven times as much filler 

as the Thornel 50 addition would be required.    Further, on a weight-per- 

unit-volume basis we see from Column B*, Table IV, that the additional 

quantity of filler required with the corresponding higher density than 

graphite (or BN) would yield compounds significantly denser than the 

graphite fiber filler modification. 

15 
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The graphite fibers, although well established as high performance 

fibrous reinforcements, have yet to develop a sizable market to reduce 

current prices of about$50 per pound and up, depending on modulus of yarn 

and construction. It is anticipated that further developments in pre- 

cursor technology and production processes could reduce the cost to 

$5-10 per pound for continuous fibers. It may be possibly to produce 

or obtain short fibers of the type necessary to obtain low a potting 

compounds for less cost. 

The BN fibers have not been developed to the degree that graphite 

fibers have, i.e., controliable modulus in excess of 80 x 10" psi. 

Future advancements in this area promise to provide fibers with signifi- 

cantly higher modulus and strength properties and correspondingly more 

negative values of a than the fibers used in this preliminary stidy. 

Projected economics indicate that it is feasible to produce continuous 

BN fibers of high modulus and strength for less than $5 per pound. 

The current prices of graphite and BN fibers are not competitive with 

the fillers listed in Table IV, which sell for about 8-12 cents per pound 

in large lots. However, in some instances, due to the quantity of filler 

required, it may be impractical to utilize the low cost fillers because 

of processing restraints. Then too, the large filler addition (depending 

on type used) would increase modulus of potting compound, lessening, in 

turn, resistance to thermally induced stresses. Use of graphite a,id/or 

BN fibers as fillers certainly should be considered when combinations 

of attributes such as low density, viscosity, modulus, low quantity of 

fibers, control of thermal stresses, control of resistivity, and facile 

processing are desirable. Close scrutiny must be given to the seemingly 

obvious advantage of low cost of other fillers as compared to the 

resulting system performance. 

Critical applications, aerospace or other, where reliability, 

survivability, and low maintainability are of paramount concern, dictate 

consideration of graphite and or BN fiber filler potting compounds. 

16 
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SECTION VII 

CONCLUSIONS 

Preliminary experiments and tests have shown that it is feasible to 

incorporate small quantities (16 pph or less) of short fibers of graphite 

and/or boron nitride in an epoxy poTymer to: 

a. Reduce a   significantly from 5*.3 x 10"    in/in/°C for the cured 

unmodified epoxy to 12.3 x 10"    in/WC for a 16 pph Thornel  75 form- 

ulated compound. 

b. Considerably reduce thermally induced compression stresses on 

potted sensors or elements. 

c. Control a    over a wide range while maintaining low cured potting 

compound density, as well as pourable viscosity. 

d. Maintain high levels of pottinc, compound resistivity by 

utilization of BN fibers as sole modifier. 

e. Adjust mechanical, physical, and thermal properties of potting 

compounds by using mixtures of graphite and BN fibers. 

17 
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Figure 1.    As-Received Boron Nitride Fiber Mat 

Figure 2.    Higher Magnification of Boron Nitride Fibers from Mat 

18 
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POTTING  COMPOUND 
(UNRESTRAINED) 

RIGID CONTAINER 

Figure 3.    2-Dimensionally Restrained Potting Compound 

POTTING COMPOUND 
FULLY RESTRAINED 

RIGID CONTAINER 
(ENTIRE VOLUME FILLED) 

Figure 4.    3-Olraensionally Restrained Potting Compound 
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FILLER CONTENT, PERCENT BY WETGHT OF TOTAL MIX 
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Figure 6. Shell Data. Effect of Fillers on Coefficient of Linear 
Thermal Expansion 
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Figure VI. Thermally Induced Compression Stresses - Thornel 75 
Fiber FUled/Epon 81E, DTA-2-D and 3-D Restraints 
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